思考,快与慢-第30章
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
两位教授候选人,应该选择哪一位?
前文中,我向大家介绍了汤姆的情况,用以说明不连续结果的预测问题,比如对其所属的专业领域或者一次考试的成功概率进行的预测,这些预测是通过评估某一特定事件的可能性(或者按照结果出现的可能性大小排序)来表达的。我还曾描述过抵制不连续预测中的常见偏见的步骤,比如忽略基础比率,对信息的优劣不敏感。
有些预测偏见是通过一个数值范围来表达的,例如某学生的平均绩点或某公司的收益,这些偏见与我们在判断结果的可能性的过程中所持偏见相似,而两种偏见的修正过程也十分相似:都包含一种基准线预测,如果你对手头这个案例的情况一无所知,便会作出这种预测。在绝对的情况下,这个基准线是基础比率;在有数字的情况下,这个基准线就是相关结果的平均值。都包含一种直觉预测,无论是可能性或是平均绩点,这种预测会将呈现在大脑中的数值通通表达出来。在上述两种情况中,你的目的都是要作出一种预测,这种预测可在基础比率和直觉性反应之间充当媒介。在没有什么有价值的信息的情况下,你会坚守基准线。在其他极端情况下,你还会坚守自己最初的预测。当然,只有在对支持自己最初预测的证据进行过严格验证之后,你才会信心十足地坚持那个预测。在大多数情况下,你会发现自己有理由怀疑自己的直觉判断和真理之间的关联其实并不完美,而你最终会给出介于两者之间的判断。
这个过程很接近一个恰当的统计分析可能会出现的结果。如果成功的话,这个过程就会使你作出的预测偏见越来越少,作出的可能性评估越来越合理,对各种数值作出的预测也越来越适度。前述两个过程意在解决同一种偏见,即直觉性预测总是过于自信或过于极端。
修正你的直觉性预测的偏见是系统2的任务。要想找到相关的参照物、对基准预测作出估测或者对证据的质量进行评估,往往需要付出很大的努力。只有在风险很高而你又特别渴望避免犯错误时,这种努力才显得合乎情理。此外,你应该知道纠正你的直觉也许会使你的生活变得复杂。无偏见预测的一个特征就是,只有在信息非常有效时才允许人们对罕见或极端的事件作出预测。如果你期待自己作出恰当有效的预测,那么你的预测结果就永远不会太离谱或者偏离平均值太多。而如果你的预测不存在偏见,你也就永远不会有极端事件的“愉快体验”了。当你在法学院最得意的学生成为最高法院的法官时,或者当你曾经很看好的那家新成立的公司成为商界新秀时,你永远不会说“我早就知道会这样”。如果信息量有限,你也无法预测到一个出色的高中生会成为普林斯顿大学的优等生;同理,一个风险资本家永远不会认为新创立的公司在起步阶段时成功的概率会“很高”。
一定要严肃对待那些反对适度的直觉性预测原则的意见,因为摆脱偏见并非总是头等大事。如果不问具体情况,对所有预测的错误都同样对待,那么对无偏见预测的偏爱就是合理的了。然而总有那么一些时候,一种错误比另一种错误更糟糕。若一位风险投资家只为寻找“下一件大事”,那么他错过下一个谷歌或脸谱网的风险就会远远大于对刚刚创立的公司(最终破产)进行适度投资带来的风险。风险投资家的目标是正确判断极端情况,甚至以高估其他许多风险为代价也在所不惜。对于借出大笔贷款的保守银行家来说,某一位借款人破产带来的风险会比拒绝几位可能会履行债务的潜在客户带来的风险更大。在这种情况下,即使作出这些判断所依据的信息效度只是适中,使用极端的语言(“前景非常好”,“违约的严峻风险”)也可能会为其带来舒适感。
对于一个理性的人来说,无偏见且适度的预测不应该引发问题。毕竟一个理性的风险投资家知道,即便是最有前景的新建公司,其成功概率也只是中等水平而已。她将自己的工作视为从所有赌注中找到的前景最好的赌注,而且关于要投资的那家新建公司的发展前景问题,她觉得没有必要欺骗自己。同样,预测某家公司收益的理性个体不会受到某个数字的束缚,他们应该考虑到最有可能出现的那个结果的不确定性。如果成功的回报足够大,一个理性的人就会考虑向一家极有可能倒闭的企业投资一大笔钱,而不会自欺欺人地抬高其成功概率。然而,我们并不都是理性的,我们中的一些人也许还需要歪曲判断作为保护来掩盖自己的无能为力。如果选择接受极端的预测来蒙蔽自己,你就会清楚地意识到自己对自己的纵容。
也许我提出来的那几个修正步骤最难能可贵的贡献就是这些步骤会要求你思考自己对事情到底了解多少。接下来我会运用一个学术界尽人皆知的例子,其他生活领域中的例子亦可依此类推。一个部门要雇用一位年轻的教授,他们希望这位教授未来的学术能力能够达到最高水平。该部门的调查委员会最后将候选人圈定为两个:
金最近完成了毕业设计。她的推荐信中都是对她的溢美之词,而且面试时她说得也很好,给在场的每个人都留下了深刻的印象。不过她没有什么实质性的科研成果。
简经过过去3年的学习取得了博士后头衔,学术成果颇丰,研究也做得非常出色,但她在面试时表现得不如金出色。
我们直觉会选择金,因为她给人的印象更深刻,而且眼见即为事实。但与简的信息相比,金的相关信息则少很多。我们可以回想一下小数原则。事实上,你从关于金的描述中得到的信息样本比简的要小,而且在小样本中更容易发现极端的结果。小样本的结果往往有更多的运气成分,因此在判断金将来的表现时,更应该回归平均值。若觉得金更有可能退步,最终你就会选择简,尽管你对她的印象并不深刻。如果按照学术能力来选人,我会投给简一票,但我得先努力克服自己对金的直觉印象,金更有希望。跟着我们的直觉走比违背直觉感觉更自然、更亲切。
你很容易就能想象出不同情境下的相似问题,例如某位风险投资家要在位于不同市场中的两家新建公司之中选出一家进行投资,他可以相当精确地预估其中一家公司的产品需求量,而另一家是一派欣欣向荣的景象,让人觉得更有希望,但其发展前景却并不是很确定。如果把这种不确定因素考虑在内的话,你对第二家公司前景的最佳猜测是否还会优于第一家公司呢?这个问题值得认真思考。信息不足时,极端预测和预测罕见事情的愿意都源于系统1。联想机制会很自然地将极端预测和作出这些极端预测所依据的可察觉的信息极端性匹配在一起,这也正是替代的运行机制。而且系统1形成过于自信的判断也是正常的,因为自信是由你根据可得信息提炼出来的最合理故事的连贯程度决定的,这一点我们都明白。但要注意:你的直觉会产生极端预测,而你也很容易对这种极端信心满满。
回归性也是系统2的一个问题。回归平均值这一概念很新奇,沟通和理解皆非易事。高尔顿在弄懂这一概念之前也颇费了一番心思。很多统计学老师在讲到这一问题时,心中也很没底,学生们最后对这个重要概念也是似懂非懂,只有个很模糊的概念。这个例子说明系统2需要经过特殊训练。将预测和信息匹配起来不仅是我们的直觉行为,这样做似乎也是很合理的。我们无法根据经验理解回归性。即使我们对回归性已经有了明确认识,就像我们在飞行教练员的故事中看到的那样,也只会用因果关系来解释这一特性,而这个解释往往又是错的。
示例:直觉性预测
“那家新成立的公司已经深入人心了,但我们不能指望他们将来也能做得这么好。他们的营销之路很长,回归的空间也很大。”
“我们的直觉性预测的确令人鼓舞,但这个预测可能离现实太远了,还是让我们再看看手中的信息资料,让预测回归到平均状态吧。”
“即使这次投资极有可能失败,我们还是觉得这项投资可能是个不错的想法。咱们还是别说什么这就是下一个谷歌这样的话吧。”
“我读过关于那个品牌的一篇评论,评价极高,然而这很可能只是侥幸成功。我们应该这样想:对这个品牌的评论很多,而我们看到的这个正巧是评价最高的。”
第三部分 过度自信与决策错误
第19章 “知道”的错觉
纳西姆·塔勒布身兼商人、哲学家、统计学家等多种角色,还被视为心理学家。他在自己的著作《黑天鹅》中,引入了“叙事谬误”的概念,用来描述存有缺憾的往事是如何影响我们的世界观和我们对未来的预期的。我们不断试图去了解这个世界,在这个过程中难免就会产生“叙事谬误”。能够吸引人们眼球的那些说法往往很通俗易懂,那些说法具体而不抽象,它们认为天资、愚蠢和意图的作用都要超过运气的作用,它们关注的是少数几件已经发生的重大事件,而不是无数件并没有发生的事。任何新近发生的有影响的事都可能成为一个存在因果关系的故事的核心情节。塔勒布指出,我们人类常会为过去的憾事编造牵强的解释,并信以为真,以此来蒙蔽自己。
好的故事为人们的行为和意图提供了简单且合乎逻辑的解释。你总是喜欢将行为看成是一般习性和个性特征的外在表现,你可以很轻松地找到这些结果的原因。此前讨论的光环效应是思维连贯性形成的部分原因,因为这一效应使我们更有可能将自己对某人所有品质的看法和对其特别重要特质的判断匹配起来。例如,如果觉得这位棒球投手又帅又强壮,那我们也很容易会认为他投球水平一定很高。光环效应也可能是负面的:如果觉得一位运动员很丑,我们就很可能会低估他的竞技能力。光环效应通过夸大评估的一致性来保持简单和连贯的特点:好人只做好事,坏人全都很坏。“希特勒喜欢狗和小鸡”这种说法,不论你听过多少次,无论如何都不会相信。因为根据光环效应,如此坏的人是不会有任何善意的,而这句话却违背了这一点。一致性使我们的想法有些固执,感觉模糊不定。
引人入胜的故事会使人产生某种必然性错觉。谷歌变身为科技产业巨人的故事就是一例。斯坦福大学计算机科学系有两位极富创造力的研究生,他们想出了一个在互联网上搜寻信息的好方法,于是便筹集资金创建了一家公司,此后又连续做出很多行之有效的决策。几年后,他们创建的公司成为美国股票市场上最有价值的一家,这两位研究生也跻身全球顶级富豪之列。不同寻常的机遇再加上好运气使得这个故事引人入胜。谷歌上市一年后,他们就想以不到100万美元的价格卖掉公司,但买方却说太贵了。
虽然详尽的历史更能详细说明谷歌创始人当时的决定,但我们前面的叙述已足以说明两位创始人当时所作的每一个决定几乎都为他们带来了美好的结局。一个更完整的故事还可以描述谷歌打败的那些公司所采取的行动,这些倒霉的竞争者似乎很盲目,它们行动迟缓,而且没有足够的能力来对抗谷歌的威胁。
尽管我在讲述上述故事时刻意采用了平淡的口吻,但你仍然会有这样的想法:这个故事非常棒。如果加上更多细节,这个故事就会让你觉得自己明白谷歌成功的秘诀。它还会使你感觉自己学到了颇具价值的重要一课,了解了企业成功的秘诀。但不幸的是,我们有足够的理由相信,你对谷歌这个例子的理解和认识大都是错觉。想知道一个解释是否行得通,可以对它作一个最终测试,看它能否使这个事件事先就能被预测到。谷歌成功的故事就符合这样的测试,因为这其中没有哪一个故事会包含无数个可能会导致不同结果的事件。人类的大脑无法妥善处理没有发生的事情。事实上,很多实实在在发生过的重要事件中包含着众多抉择,这些抉择会诱导你夸大技能的作用并低估运气对最终结局的影响。因为每一个重要决策都有好的结果,上述故事堪称一个几乎毫无瑕疵的预言,但坏运气本来极有可能扰乱这些成功的步伐。光环效应还有最后一个阶段,即给该故事的主角戴上不可战胜的光环。
如同看着一位技能娴熟的筏夫沿激流而下时巧妙地躲过一个又一个暗礁险滩一般,阅读谷歌的故事之所以令人振奋也是因为故事中艰难风险接连不断。然而,两者间有着很大的不同。技能熟练的筏夫有过上百次顺激流而下的经验,他能通过观察眼前的激流预测哪里有障碍,他学过如何对姿势�