中华学生百科全书-第476章
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
这块墓碑也标志着研究π的一个历史阶段的结束,欲求π的更精确的值,需
另辟途径)。
17 世纪以后,随着微积分的出现,人们便利用级数来求π值,1873 年算
至 707 位小数,1948 年算至 808 位,创分析方法计算圆周率的最高纪录。
1973 年,法国数学家纪劳德和波叶,采用 7600CDC 型电子计算机,将π
值算到 100 万位,此后不久,美国的科诺思,又将π值推进到 150 万位。1990
年美国数学家采用新的计算方法,算得π值到 4.8 亿位。
早在 1761 年,德国数学家兰伯特已证明了π是一个无理数。
将π计算到这种程度,没有太多的实用价值,但对其计算方法的研究,
却有一定的理论意义,对其他方面的数学研究有很大的启发和推动作用。
运算符号的由来
表示计算方法的符号叫做运算符号。如四则计算中的+、…、×、÷等。
加号“+”是加法符号,表示相加。
减号“…”是减法符号,表示相减。
“+”与“…”这两个符号是德国数学家威特曼在 1489 年他的著作《简算
与速算》一书中首先使用的。在 1514 年被荷兰数学家赫克作为代数运算符
号,后又经法国数学家韦达的宣传和提倡,开始普及,直到 1630 年,才获得
大家的公认。
乘号“×”是乘法符号,表示相乘。1631 年,英国数学家奥特轩特提出
用符号“×”表示相乘。乘法是表示增加的另一种方法,所以把“+”号斜过
来。另一个乘法符号“·”是德国数学家莱布尼兹首先使用的。
除号“÷”是除法符号,表示相除。用这个符号表示除法首先出现在瑞
士学者雷恩于 1656 年出版的一本代数书中。几年以后,该书被译成英文,才
逐渐被人们认识和接受。
关系符号
表示数与数、式与式或式与数之间的某种关系的特定符号,叫做关系符
号。有等号,大于号,小于号,约等于号,不等号等等。
等号:表示两个数或两个式或数与式相等的符号,记作“=”,读作“等
于”。例如:3+2=5,读作三加二等于五。第一个使用符号“=”表示相等的
是英国数学家雷科德。
大于号:表示一个数(或式)比另一个数(或式)大的符号,记作“>”,
读作“大于”。例如:6>5,读作六大于五。
小于号:表示一个数(或式)比另一个数(或式)小的符号,记作“<”,
读作“小于”。例如:5<6,读作五小于六。大于号和小于号是英国数学家
哈里奥特于 17 世纪首先使用的。
约等于号:表明两个数(或式)大约相等的符号,记作“≈”,读作“约
等于”。例如:π≈3.14,读作π约等于三点一四。
不等号:表示两个数(或式)不相等的符号,记作“≠”,读作“不等
于”。例如 4+3≠9,读作四加三不等于九。
“ ”的来源
最早用“ ”表示根号的,是法国数学家笛卡尔。17世纪,笛卡尔在
他的著作《几何学》一书中首先用了这种数学符号。
“ ”这个符号表示两层意思:左边部分“√”是由拉丁字母“r”
演变而来的,它表示“root”即“方根”的意思;右上部的一条横线,
正如我们已经习惯的表示括号的意思,也就是对它所括的数求方根。
正因为“ ”既表示方根,又表示括号,所以凡在运算中遇到“ ”,
必须先做括号内的算式,然后再做其他运算。也就是说先要做根号运算。
奇妙的数字“9”
将循环小数化成分数,是解决有关循环小数的基本方法。怎样才能将循
环小数化成分数呢?这要请我们的老朋友——9 来帮助解决问题。我们知
道,
a
在数列计算中,有一个无穷等比数列的求和公式:S = 。其中a是这个数
1…q
列的第一项,q 是公比。下面要用这个公式来研究化循环小数为分数的方法。
先观察下面两个循环小数:0.6666……=0.6,0.242424……=0.24。它们都是
从小数点后的第一位开始循环的,叫做纯循环小数。为了便于计算,先将它
们写成分数的和的形式:
0.666……=0.6+0.06+0.006……
= 10 100 1000 10000+Λ
6 + 6 + 6 + 6 Λ
0.242424……=0.24+0.0024+0.000024……
= 100 10000 1000000+Λ
24 + 24 + 24 Λ
1
这就变成了无穷递缩等比数列的形式。0。6666……的公比是10 ,而
1
0。242424……的公比是100。根据求和公式得:
6
0。66Λ Λ 10 6 = 6
1 =
1 101 9
10
24
0。242424Λ Λ 100 24 24
1 = =
1 1001 99
100
由此可以看出,要把纯循环小数化为分数,只要把一个循环节的数字化为分
子,让分母由 9 组成,循环节有几位数字,分母是几个 9 就行了。例如:
4
0。4444Λ Λ = 0。4 =
9
56
0。5656Λ Λ = 0。56 =
99
031233123Λ Λ = 0。3123= 3123 = 347
9999 1111
下面再来看看以下两个循环小数:
0。2888…… = 0。28 ; 0。3545454Λ Λ = 0。354它们都不是从小数点后的第一
从小数点后的第一位开始循环,这叫混循环小数。用分数的和可表示为:
2 8 8 8
0。28888 =Λ Λ 10 100 1000 10000+Λ
+ + + Λ
0。35454Λ Λ = 3 54 + + 54
10 1000 100000
1 1
这种和的形式,从第二项起,构成了一个分别以10、100为公比的无穷递
缩等比数列。由求和公式得:
8
2 100 2 8
0。2888Λ Λ = + = +
10 1
1 10 10010
100
2 8 2×9+8
= + =
10 90 90
= 26 13
=
90 45
54
3 3 54
0。35454Λ Λ = + 100 = +
10 1
1 10 100010
100
3 54 3×99+ 54
= = + =
10 990 990
= 351 = 39
990 110
由此可以看出:把混循小数化为分数,先去掉小数点,再用第二个循环
节以前的数字减去不循环部分的数字,将得到的差作为分子;分母由 9 和 0
组成,9 的个数等于一个循环节的位数,9 的后面写 0,0 的个数等于循环部
分的位数。例如:
27 2 25 5
0。27777Λ Λ = 0。27 = = =
90 90 18
0。31252525Λ Λ 0。3125= 3125 31 1547
=
9900 4950
数学的变化虽是无穷的,在研究了大量的现象或大量的例题后,应学会
从特殊的问题中,善于总结出一般规律的思考方法。
神奇的“缺 8 数”
“缺 8 数”——12345679,颇为神秘,故许多人在进行探索。
清一色 菲律宾前总统马科斯偏爱的数字不是 8,却是 7。于是有人对
他说:“总统先生,你不是挺喜欢 7 吗?拿出你的计算器,我可以送你清一
色的 7。”接着,这人就用“缺 8 数”乘以 63,顿时,777777777 映入了马
科斯先生的眼帘。
“缺 8 数”实际上并非对 7 情有独钟,它是“一碗水端平”,对所有的
数都“一视同仁”的:你只要分别用 9 的倍数(9,18……直到 81)去乘它,
则 111111111,222222222……直到 999999999 都会相继出现。
三位一体 “缺 8 数”引起研究者的浓厚兴趣,于是人们继续拿 3 的倍
数与它相乘,发现乘积竟“三位一体”地重复出现。例如:
12345679×12=148148148
12345679×15=185185185
12345679×57=703703703
轮流“休息” 当乘数不是 3 的倍数时,此时虽然没有“清一色”或“三
位一体”现象,但仍可看到一种奇异性质:乘积的各位数字均无雷同。缺什
么数存在着明确的规律,它们是按照“均匀分布”出现的。另外,在乘积中
缺 3、缺 6、缺 9 的情况肯定不存在。
让我们看一下乘数在区间[10~17] 的情况,其中 12和15 因是3的倍数,
予以排除。
12345679×10=123456790(缺 8)
12345679×11=135802469(缺 7)
12345679×13=160493827(缺 5)
12345679×14=172869506(缺 4)
12345679×16=197530864(缺 2)
12345679×17=209876543(缺 1)
乘数在[19~26]及其他区间(区间长度等于 7)的情况与此完全类似。
乘积中缺什么数,就像工厂或商店中职工“轮休”,人人有份,但也不
能多吃多占,真是太有趣了!
一以贯之 当乘数超过 81 时,乘积将至少是十位数,但上述的各种现
象依然存在,真是“吾道一以贯之”。随便看几个例子:
(1)乘数为 9 的倍数
12345679×243=2999999997,只要把乘积中最左边的一个数 2 加到最右
边的 7 上,仍呈现“清一色”。
(2)乘数为 3 的倍数,但不是 9 的倍数
12345679×84=1037037036,只要把乘积中最左边的一个数 1 加到最右边
的 6 上,又可看到“三位一体”现象。
(3)乘数为 3k+1 或 3k+2 型
12345679×98=1209876542,表面上看来,乘积中出现雷同的 2,但据上
所说,只要把乘积中最左边的数 1 加到最右边的 2 上去之后,所得数为
209876543,是“缺 1”数,而根据上面的“学说”可知,此时正好轮到 1 休
息,结果与理论完全吻合。
走马灯 冬去春来,24 个节气仍然是立春、雨水、惊蛰……其次序完全
不变,表现为周期性的重复。“缺 8 数”也有此种性质,但其乘数是相当奇
异的。
实际上,当乘数为 19 时,其乘积将是 234567901,像走马灯一样,原先
居第二位的数 2 却成了开路先锋。深入的研究显示,当乘数成一个公差等于
9 的算术级数时,出现“走马灯”现象。例如:
12345679×28=345679012
12345679×37=456790123
回文结对 携手同行 “缺 8 数”的“精细结构”引起研究者的浓厚兴
趣,人们偶然注意到:
12345679×4=49382716
12345679×5=61728395
前一式的积数颠倒过来读(自右到左),不正好就是后一式的积数吗?
(但有微小的差异,即 5 代以 4,而根据“轮休学说”,这正是题中的应有
之义。)
这样的“回文结对,携手并进”现象,对 13、14、22、23、31、32、40、
41 等各对乘数(每相邻两对乘数的对应公差均等于 9)也应如此。例如:
12345679×67=827160493
12345679×68=839506172
遗传因子 “缺 8 数”还能“生儿育女”,这些后裔秉承其“遗传因子”,
完全承袭上面的这些特征,所以这个庞大家族的成员几乎都同其始祖
12345679 具有同样的本领。
例如,506172839 是“缺 8 数”与 41 的乘积,所以它是一个衍生物。
我们看到,506172839×3=1518518517。
如前所述,“三位一体”模式又来到我们面前。
能被 2 和 5 整除的数
一个数的末一位数能被 2 和 5 整除,这个数就能被 2 和 5 整除。具体地
说,个位上是 0、2、4、6、8 的数,都能被 2 整除。个位上是 0 或是 5 的数,
都能被 5 整除。
例如:128、64、30 的个位分别是 8、4、0,这 3 个数都能被 2 整除。
281、165、79 的个位分别是 1、5、9,那么这 3 个数都不能被 2 整除。
在上面的 6 个数中,30 和 165 的个位分别是 0 和 5,这两个数能被 5 整
除,其他各数均不能被 5 整除。
能被 3 和 9 整除的数
一个数各个数位上的数的和能被 3 或 9 整除,这个数就能被 3 或 9 整除。
7+4+1+6=18,18 能被 3 整除,也能被 9 整除,所以 7416 能被 3 整除,
也能被 9 整除。
再如:5739 各个数位上的数之和是:
5+7+3+9=24,24 能被 3 整除,但不能被 9 整除,所以 5739 能被 3 整除,
而不能被 9 整除。
能被 4 和 25 整除的数
一个数的末两位数能被 4 或 25 整除,这个数就能被 4 或 25 整除。具体
地说,一个数的末两位数是 0,或是 4 的倍数这个数就是 4 的倍数,能被 4
整除。一个数的末两位数是 0 或是 25 的倍数,这个数就是 25 的倍数,能被
25 整除。
例如:324,4200,675,三个数中,324 的末两位数是 2424 是 4 的倍数,
所以 324 能被 4 整除。675 的末两位数是 7575 是 25 的倍数,所以 675 能被
25 整除,4200 的末两位数都是 0,所以42